9.2 Update Model
Update to fit a regression decision tree
rt_spec <-
parsnip::decision_tree() %>%
parsnip::set_engine(engine = "rpart") %>%
parsnip::set_mode("regression")
all_fitwf <- rt_wf %>%
tune::last_fit(ames_split)
all_fitwf %>%
tune::collect_metrics()
## # A tibble: 2 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 39730.
## 2 rsq standard 0.701
all_fitwf %>% tune::collect_predictions()
## # A tibble: 732 x 4
## id .pred .row Sale_Price
## <chr> <dbl> <int> <int>
## 1 train/test split 107845. 2 105000
## 2 train/test split 137889. 3 172000
## 3 train/test split 167715. 8 191500
## 4 train/test split 168788. 10 189000
## 5 train/test split 167715. 14 171500
## 6 train/test split 344321. 16 538000
## 7 train/test split 194020. 17 164000
## 8 train/test split 168788. 21 190000
## 9 train/test split 137889. 25 149900
## 10 train/test split 107845. 27 126000
## # … with 722 more rows