Solution
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.4
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ───────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x readr::spec() masks yardstick::spec()
library(tidymodels)
## ── Attaching packages ───────────────────────────────────────────────────────────── tidymodels 0.0.3 ──
## ✓ broom 0.5.4 ✓ recipes 0.1.9
## ✓ dials 0.0.4 ✓ rsample 0.0.5
## ✓ infer 0.5.1
## ── Conflicts ──────────────────────────────────────────────────────────────── tidymodels_conflicts() ──
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag() masks stats::lag()
## x dials::margin() masks ggplot2::margin()
## x readr::spec() masks yardstick::spec()
## x recipes::step() masks stats::step()
## x recipes::yj_trans() masks scales::yj_trans()
set.seed(42)
ames_split <- rsample::initial_split(ames)
ames_train <- rsample::training(ames_split)
ames_test <- rsample::testing(ames_split)
lm_fit <- parsnip::linear_reg() %>%
parsnip::set_engine(engine = "lm") %>%
parsnip::fit(Sale_Price ~ Gr_Liv_Area, data = ames_train)
price_pred <- lm_fit %>%
stats::predict(new_data = ames_test) %>%
dplyr::mutate(price_truth = ames_test$Sale_Price)
yardstick::rmse(price_pred, truth = price_truth, estimate = .pred)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 56478.