7.3 purrr (map)

library(purrr)
map(f_values, f_c)
## [[1]]
## [1] -17.77778
## 
## [[2]]
## [1] 0
## 
## [[3]]
## [1] 100
## 
## [[4]]
## [1] -40
map_dbl(f_values, f_c)
## [1] -17.77778   0.00000 100.00000 -40.00000
mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
map(mtcars, class)
## $mpg
## [1] "numeric"
## 
## $cyl
## [1] "numeric"
## 
## $disp
## [1] "numeric"
## 
## $hp
## [1] "numeric"
## 
## $drat
## [1] "numeric"
## 
## $wt
## [1] "numeric"
## 
## $qsec
## [1] "numeric"
## 
## $vs
## [1] "numeric"
## 
## $am
## [1] "numeric"
## 
## $gear
## [1] "numeric"
## 
## $carb
## [1] "numeric"
map_chr(mtcars, class)
##       mpg       cyl      disp        hp      drat        wt      qsec        vs 
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" 
##        am      gear      carb 
## "numeric" "numeric" "numeric"
map_dbl(mtcars, mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
map(mtcars, summary)
## $mpg
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.40   15.43   19.20   20.09   22.80   33.90 
## 
## $cyl
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   4.000   4.000   6.000   6.188   8.000   8.000 
## 
## $disp
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    71.1   120.8   196.3   230.7   326.0   472.0 
## 
## $hp
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    52.0    96.5   123.0   146.7   180.0   335.0 
## 
## $drat
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.760   3.080   3.695   3.597   3.920   4.930 
## 
## $wt
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.513   2.581   3.325   3.217   3.610   5.424 
## 
## $qsec
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   14.50   16.89   17.71   17.85   18.90   22.90 
## 
## $vs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.4375  1.0000  1.0000 
## 
## $am
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.4062  1.0000  1.0000 
## 
## $gear
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   4.000   3.688   4.000   5.000 
## 
## $carb
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   2.000   2.812   4.000   8.000

7.3.1 Exercise

  1. Compute the mean of every column in mtcars.
  2. Determine the type of each column in nycflights13::flights.
  3. Compute the number of unique values in each column of iris. (Hint: you may want to write a function)
  4. Generate 10 random normals from distributions with means of -10, 0, 10, and 100.

7.3.1.1 Solutions

# 1. Compute the mean of every column in mtcars
purrr::map_dbl(mtcars, mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# 2. Determine the type of each column in nycflights13::flights.
purrr::map_chr(nycflights13::flights, class)
## Error: Result 19 must be a single string, not a character vector of length 2
purrr::map(nycflights13::flights, class)
## $year
## [1] "integer"
## 
## $month
## [1] "integer"
## 
## $day
## [1] "integer"
## 
## $dep_time
## [1] "integer"
## 
## $sched_dep_time
## [1] "integer"
## 
## $dep_delay
## [1] "numeric"
## 
## $arr_time
## [1] "integer"
## 
## $sched_arr_time
## [1] "integer"
## 
## $arr_delay
## [1] "numeric"
## 
## $carrier
## [1] "character"
## 
## $flight
## [1] "integer"
## 
## $tailnum
## [1] "character"
## 
## $origin
## [1] "character"
## 
## $dest
## [1] "character"
## 
## $air_time
## [1] "numeric"
## 
## $distance
## [1] "numeric"
## 
## $hour
## [1] "numeric"
## 
## $minute
## [1] "numeric"
## 
## $time_hour
## [1] "POSIXct" "POSIXt"
# Compute the number of unique values in each column of iris.
count_unique <- function(x) {
    return(length(unique(x)))
}

purrr::map_int(iris, count_unique)
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species 
##           35           23           43           22            3
purrr::map_int(iris, function(x) length(unique(x)))
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species 
##           35           23           43           22            3
purrr::map_int(iris, ~ length(unique(.)))
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species 
##           35           23           43           22            3
# Generate 10 random normals from distributions with means of -10, 0, 10, and 100.
purrr::map(c(-10, 0, 10, 100), ~ rnorm(n = 10, mean = .))
## [[1]]
##  [1]  -8.629042 -10.564698  -9.636872  -9.367137  -9.595732 -10.106125
##  [7]  -8.488478 -10.094659  -7.981576 -10.062714
## 
## [[2]]
##  [1]  1.3048697  2.2866454 -1.3888607 -0.2787888 -0.1333213  0.6359504
##  [7] -0.2842529 -2.6564554 -2.4404669  1.3201133
## 
## [[3]]
##  [1]  9.693361  8.218692  9.828083 11.214675 11.895193  9.569531  9.742731
##  [8]  8.236837 10.460097  9.360005
## 
## [[4]]
##  [1] 100.45545 100.70484 101.03510  99.39107 100.50496  98.28299  99.21554
##  [8]  99.14909  97.58579 100.03612