10.7 unnest
Expanding a list column
simple_split %>%
dplyr::mutate(train_set = purrr::map(splits, training)) %>%
tidyr::unnest(train_set)
## # A tibble: 2,199 x 83
## splits id MS_SubClass MS_Zoning Lot_Frontage Lot_Area Street Alley
## <list> <chr> <fct> <fct> <dbl> <int> <fct> <fct>
## 1 <spli… trai… One_Story_… Resident… 80 11622 Pave No_A…
## 2 <spli… trai… One_Story_… Resident… 81 14267 Pave No_A…
## 3 <spli… trai… One_Story_… Resident… 93 11160 Pave No_A…
## 4 <spli… trai… Two_Story_… Resident… 74 13830 Pave No_A…
## 5 <spli… trai… One_Story_… Resident… 41 4920 Pave No_A…
## 6 <spli… trai… One_Story_… Resident… 43 5005 Pave No_A…
## 7 <spli… trai… One_Story_… Resident… 39 5389 Pave No_A…
## 8 <spli… trai… Two_Story_… Resident… 60 7500 Pave No_A…
## 9 <spli… trai… Two_Story_… Resident… 75 10000 Pave No_A…
## 10 <spli… trai… Two_Story_… Resident… 63 8402 Pave No_A…
## # … with 2,189 more rows, and 75 more variables: Lot_Shape <fct>,
## # Land_Contour <fct>, Utilities <fct>, Lot_Config <fct>, Land_Slope <fct>,
## # Neighborhood <fct>, Condition_1 <fct>, Condition_2 <fct>, Bldg_Type <fct>,
## # House_Style <fct>, Overall_Qual <fct>, Overall_Cond <fct>,
## # Year_Built <int>, Year_Remod_Add <int>, Roof_Style <fct>, Roof_Matl <fct>,
## # Exterior_1st <fct>, Exterior_2nd <fct>, Mas_Vnr_Type <fct>,
## # Mas_Vnr_Area <dbl>, Exter_Qual <fct>, Exter_Cond <fct>, Foundation <fct>,
## # Bsmt_Qual <fct>, Bsmt_Cond <fct>, Bsmt_Exposure <fct>,
## # BsmtFin_Type_1 <fct>, BsmtFin_SF_1 <dbl>, BsmtFin_Type_2 <fct>,
## # BsmtFin_SF_2 <dbl>, Bsmt_Unf_SF <dbl>, Total_Bsmt_SF <dbl>, Heating <fct>,
## # Heating_QC <fct>, Central_Air <fct>, Electrical <fct>, First_Flr_SF <int>,
## # Second_Flr_SF <int>, Low_Qual_Fin_SF <int>, Gr_Liv_Area <int>,
## # Bsmt_Full_Bath <dbl>, Bsmt_Half_Bath <dbl>, Full_Bath <int>,
## # Half_Bath <int>, Bedroom_AbvGr <int>, Kitchen_AbvGr <int>,
## # Kitchen_Qual <fct>, TotRms_AbvGrd <int>, Functional <fct>,
## # Fireplaces <int>, Fireplace_Qu <fct>, Garage_Type <fct>,
## # Garage_Finish <fct>, Garage_Cars <dbl>, Garage_Area <dbl>,
## # Garage_Qual <fct>, Garage_Cond <fct>, Paved_Drive <fct>,
## # Wood_Deck_SF <int>, Open_Porch_SF <int>, Enclosed_Porch <int>,
## # Three_season_porch <int>, Screen_Porch <int>, Pool_Area <int>,
## # Pool_QC <fct>, Fence <fct>, Misc_Feature <fct>, Misc_Val <int>,
## # Mo_Sold <int>, Year_Sold <int>, Sale_Type <fct>, Sale_Condition <fct>,
## # Sale_Price <int>, Longitude <dbl>, Latitude <dbl>
lm_split
## # # Monte Carlo cross-validation (0.75/0.25) with 1 resamples
## # A tibble: 1 x 6
## splits id .metrics .notes .predictions .workflow
## * <list> <chr> <list> <list> <list> <list>
## 1 <split [2.2K… train/test … <tibble [2 ×… <tibble [0… <tibble [731 ×… <workflo…
lm_split %>%
tidyr::unnest(.metrics)
## # A tibble: 2 x 8
## splits id .metric .estimator .estimate .notes .predictions .workflow
## <list> <chr> <chr> <chr> <dbl> <list> <list> <list>
## 1 <split [… train/… rmse standard 53810. <tibbl… <tibble [731… <workflo…
## 2 <split [… train/… rsq standard 0.529 <tibbl… <tibble [731… <workflo…
collect_metrics
is a shortcut.