Fitting models
models <- mtcars %>%
split(.$cyl) %>%
map(function(df) lm(mpg ~ wt, data = df))
models %>%
map(summary) %>%
map_dbl(~ .$r.squared)
## 4 6 8
## 0.5086326 0.4645102 0.4229655
models %>%
map_df(broom::tidy)
## # A tibble: 6 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 39.6 4.35 9.10 0.00000777
## 2 wt -5.65 1.85 -3.05 0.0137
## 3 (Intercept) 28.4 4.18 6.79 0.00105
## 4 wt -2.78 1.33 -2.08 0.0918
## 5 (Intercept) 23.9 3.01 7.94 0.00000405
## 6 wt -2.19 0.739 -2.97 0.0118